

Abstracts

A Matrix Formulation for Noise Transduction as a General Case of Noise Measure

*R.B. Hallgren. "A Matrix Formulation for Noise Transduction as a General Case of Noise Measure." 1992 *Microwave and Guided Wave Letters* 2.1 (Jan. 1992 [MGWL]): 14-16.*

Conventional noise characteristics of an active device are given by the minimum noise figure, F_{\min} , the optimum source reflection coefficient, Γ_{sopt} , and a noise resistance R_n . The noise measure extends the noise figure to include the available gain of the network, for the case of a conjugate output match, and gives values that minimize the noise power available from the network consistent with maximum available gain. Noise transduction follows as a general case of noise measure by using the transducer gain with any output load. A new noise equation is derived that is solved for the minimum transduced noise, N_l , the optimum source impedance, and the optimum load impedance. These equations minimize the noise power delivered to the load impedance consistent with a maximum in the transducer gain.

[Return to main document.](#)